Low Carbon Cities: an Overview of Scenario-based Studies

Prof. Tim Dixon

Chair in Sustainable Futures in the Built Environment

School of Construction Management and Engineering, Reading University

Retrofit 2050 Working Paper

June 2012

WP2012/2
1.0 Introduction

A recent article in New Scientist (Barley, 2010: 32) suggested that ‘there are many reasons to expect that cities might actually reduce each individual’s carbon footprint, all of which hinge around the fact that cities concentrate people closer together rather than spreading them thinly across the landscape’. This is not to suggest that cities are ‘green utopias’: they do generate large amounts of carbon emissions and deplete resources, but not only are there are complexities over how we measure these emissions, cities can be part of the solution to these same issues because they offer access to capital; economies of scale and the opportunity to rapidly deploy technologies in retrofit programmes.

As Weisz and Steinberger (2010) suggest, the 2008 World Energy Outlook chapter devoted to cities (IEA, 2008) was a milestone in recognising the potential impact of cities both positively and negatively. Indeed there are an increasing number of studies which have attempted to model the impact of energy use and carbon emissions in cities (see Dhakal, 2010 for a comprehensive overview). Much of this work has been carried out against the backdrop of the ‘Low Carbon Development’ (LCD) agenda which seeks to move countries and cities towards a more sustainable future (Skea and Nishioka, 2008). Some of these studies include scenario-based analysis but there has been very little academic literature which compares and contrasts the techniques used in these studies. The aim of this short paper is therefore to examine these studies in more detail in the context of the development of the LCD agenda.

2.0 Low Carbon Development

A low carbon development plan (LCDP) offers one way in which climate change responses and sustainable development ambitions can be linked, and in this context a LCDP should be viewed as part of but not synonymous with sustainable development (King, 2009). A variety of definitions of LCDP (or low carbon economy (LCE) or low carbon society (LCS) that would results from this plan) have been developed. Skea and Nishioka (2008), for example, suggest that a low carbon society should:

- Take actions that are compatible with the principles of sustainable development ensuring that the development needs of all groups within society are met;
- Make an equitable contribution towards reducing global carbon emissions;
- Demonstrate a high level of energy efficiency and use low-carbon energy sources and production technologies;
- Adopt patterns of consumption and behaviour that are consistent with low levels of greenhouse gas emissions.

Whilst these are generic in application there are different implications for different countries at different stages of development. For example, for developed nations this involves making deep cuts by the middle of this century, whereas developing countries will need to achieve a level of cuts that is compatible with wider development goals. Other definitions include (King, 2009):

- A development path that simultaneously restrains energy demand growth, drives new production towards low carbon sources, and provides sufficient, secure energy
supply for global economic growth (Renewable Energy and Energy Efficiency Partnership, 2007)

- Sustainable growth which helps reduce GHG emissions and environmental pollution (Cho, 2008).

One of the first national government references to a low carbon economy was the UK’s 2003 White paper on Energy (Secretary of State for Trade and Industry, 2003). Here a LCE was seen as a development path where ‘higher resource productivity, producing more with fewer natural resources and less pollution, will contribute to higher living standards and a better quality of life’, which underpinned the subsequent commitment to reduce carbon emissions by 60% by 2050. Other countries such as Japan have also adopted similar plans (Fujino, 2008, Strachan et al, 2008). In these and other LCDP/LCE/LCS ambitions, energy is strongly centre stage with commitments to (King, 2009):

- Reduce energy demand
- Move away from carbon-intensive fossil fuels
- Continuing to meet the development needs of all within society
- Ensuring energy security and
- Adopting appropriate technologies and policies.

Urban and Mulugetta (2009) and Urban and Sumner (2010) offer a helpful conceptualisation of low carbon development, which can be mapped by axes that represent changes in production and growth. As Figure 1 shows there are four broad categories of LCD, which are also outlined in Table 1.

Figure 1 Types of low carbon development (LCD) (Mulugetta and Urban, 2010)

![Figure 1](image_url)

Table 1 Types of LCD (Urban and Mulugetta (2009) and Urban and Sumner (2010))

<table>
<thead>
<tr>
<th>Types of Low Carbon Development</th>
<th>Focus and approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Carbon Growth (‘Green Economy’): Focuses on the production side of an economy and on how goods and services can be produced with lower emissions. It aims at decoupling</td>
<td>Focus mainly on mitigation, though adaptation also plays a role. Approach: Technological change, sectoral change</td>
</tr>
</tbody>
</table>
Low Carbon Lifestyle (‘Green lifestyles’): Focuses on the consumption side of a growing economy and on the consumer’s ability to reduce emissions by consuming climate-friendly products. It implies lifestyle changes and behavioural changes and also leads to a decoupling of carbon emissions (e.g. halving emissions, but doubling GDP).

Equilibrium economy: Focuses on the production side of an economy and aims at development rather than growth. No decoupling is necessary as growth is neutral (e.g. halving emissions, but keeping GDP stable).

Coexistence with nature: Focuses on the consumption side of an economy and aims at development rather than growth. No decoupling is necessary as growth is neutral (e.g. halving emissions, but keeping GDP stable).

Focus equally on mitigation and adaptation. Approach: Behavioural changes, sectoral change, technological change.

Focus mainly on mitigation, though adaptation also plays a role. Approach: Technological change, sectoral change.

Focus equally on mitigation and adaptation. Approach: Behavioural change, sectoral change, technological change.

The first two types of LCD (lifestyle and growth) assume that economic growth is compatible with significant carbon reductions, whereas the co-existence and economy paths do not. The growth and equilibrium economy approaches put an emphasis on reducing carbon production through technological change whilst the lifestyle and co-existence approaches focus on reducing demand through lifestyle and behavioural choices.

3.0 Low Carbon Cities

As Skea and Nishioka (2008) point out, whilst LCD is a long-term goal, there are practical steps that can be taken today. A number of ‘experiments’ have therefore been conducted at city scale in the LCD arena (see Deacon, 2007). Hodson and Marvin (2010) see the emergence of low and zero carbon cities as a response to resource constraints and energy security by decision-makers to reconfigure cities, set within the broader context of low carbon visions for the future. As governance and management systems become more sophisticated, new urban metrics will be required (Kennedy et al, 2009). These include measures of urban competitiveness; gross metropolitan product; greenhouse gas emissions; material flows and vulnerability to climate change.

A large number of municipalities around the world have set low carbon goals for 2020 and beyond (Gomi et al, 2010) (Figure 2). Li et al (2010) list some of these examples ranging from Bangkok and Berkeley through to Wellington and Worcester (UK). Also more than 500 of the International Coalition for Local Environmental Initiatives (ICLEI) have established greenhouse gas emissions baselines (Kennedy et al, 2009). Eighteen EU urban areas have used Greenhouse Gas Regional Inventory Protocol GRIP (also in Scotland and Sacramento, CA). The majority of these studies use techniques based on the IPCC guidelines but there are differences in methodology.
In China for example the WWF’s ‘Low Carbon City Initiative’ (LCCI) ‘aims to explore low carbon development models’ by supporting research and implementation, exploring new finance and investment opportunities and improving public awareness. Initial pilots are based in Shanghai and Baoding. Sceptics have argued (Jianquiang, 2010) that China’s low carbon cities are in reality ‘high carbon’ but nonetheless this represents an example of how national and city level interest are being mobilised and deployed to tackle climate change and related issues.

A similar experiment has also been conducted in the UK with the Low Carbon Cities programme\(^1\) supported by the Carbon Trust which is focused on Bristol, Leeds and Manchester and which is closely linked with the Core Cities programme. Under the new scheme, the Carbon Trust and the Energy Saving Trust will work with Leeds, Bristol and Manchester to develop individual city-wide action plans to achieve low carbon economies which are both prosperous and sustainable. New measures and initiatives will be introduced and could include renewable energy and tri-generation (creating power, heat and cooling from a single source) along with energy saving measures such as insulation and promoting cycling to work. Key public service bodies, businesses and community leaders in each of the cities will contribute to the strategy and its implementation.

Globally there have been a number of studies which have focused on LCD, and in particular carbon emissions. These have often been conducted on the premise that cities create between 60-80% of carbon emissions globally and nationally (see for example, studies cited by Dhakal, 2010). However, in many cases, as Satterthwaite (2010) points out, some studies may assume that all industries and power stations are in cities, or they may be confusing

\(^1\) See http://www.lowcarboncities.co.uk/cms/
cities with ‘urban centres’ (which may well be smaller than cities). In his view, the real figure is closer to 60%, although a recent IEA study (2008) put the figure at 71% (with equivalent energy demand at 67%) in 2006. It is also true that (i) cities (with one or two exceptions) produce lower per capita emissions than the countries in which they are located; and (ii) 20% of the world’s population living in high income countries accounts for nearly half of global carbon emissions (Dodman, 2008). This suggests that high consumption lifestyles in the world’s wealthiest nations are an important issue to address.

3.0 Examples: UK and International
The following section includes a short overview of recent, relevant scenario-based studies relating to low carbon cities.

3.1 London (London Energy Partnership)
3.1.1 Background
London is characterised by complex urban energy governance structures (Keirstead and Schulz, 2010). For example, besides the Greater London Authority, national and international agencies set many of the general priorities and market conditions in London and the 32 boroughs address a range of smaller scale issues. In the context of the GLA there are for example three major documents: the energy strategy; climate change action plan and spatial development strategy. Key initiatives include Energy Action Areas, the London Energy and GHG Emissions Inventory and a target of 375MW of renewable electricity capacity installed by 2020.

3.1.2 Scenarios
In 2006 the London Energy Partnership (2006) commissioned SEA/RENUE to develop a stretch target (or visionary ambitious target) for carbon savings to 2026 and then to produce four scenarios to meet the target. A fifth ‘hybrid’ target was added subsequently. The five scenarios were developed to meet a 60% reduction on 2000-based emissions by 2050 and contain the same mix of technologies to achieve the target but with different proportions. These are (Table 2):

- Large scale CHP led
- Micro-CHP led
- Renewables led
- Insulation and Efficiency led
- Hybrid which is a combination of all of the above scenarios.

The hybrid scenario was ultimately preferred, based around the most effective in terms of NPV (large scale CHP) but also including elements of the other three scenarios.

Table 2 Summary of results from the London Carbon Scenarios (from London Energy Partnership, 2006)

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Description</th>
<th>Heat (GWh/y)</th>
<th>Power (GWh/y)</th>
<th>CO$_2$ Savings (ktpa)</th>
<th>Capital Cost (£m)</th>
<th>NPV (£m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>Large CHP</td>
<td>30,296</td>
<td>23,587</td>
<td>10,442</td>
<td>8,392</td>
<td>1,192</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>Building &</td>
<td>58,478</td>
<td>22,799</td>
<td>10,285</td>
<td>7,455</td>
<td>-531</td>
</tr>
</tbody>
</table>
Scenario 5, the preferred scenario adopted a range of measures shown in Table 3.

Table 3 Summary of measures adopted in Scenario 5 (London Energy Partnership, 2006)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Installed Capacity by 2026</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass CHP</td>
<td>MW_e 500</td>
<td>It has been estimated that 200MW_e of biomass CHP are required to comply with the Mayor's Energy Strategy.</td>
</tr>
<tr>
<td>Large Gas CCGT CHP</td>
<td>MW_e 1,500</td>
<td>Lower than scenario 1, but some capacity has been included within the biomass CHP technologies.</td>
</tr>
<tr>
<td>Gas CHP – building</td>
<td>MW_e 500</td>
<td>1,000 MW_e assumed for this scenario, UK potential estimated to be 12GW_e by 2020 by CHPA.</td>
</tr>
<tr>
<td>PV – domestic</td>
<td>MW_p 100</td>
<td>Some uptake of domestic PV has been assumed.</td>
</tr>
<tr>
<td>PV- large</td>
<td>MW_p 100</td>
<td>Similar as above.</td>
</tr>
<tr>
<td>Wind - large</td>
<td>MW_e 50</td>
<td>Mayor’s Energy Strategy proposes no less than 6MW_e.</td>
</tr>
<tr>
<td>Wind - domestic</td>
<td>MW_e 50</td>
<td>Mayor’s Energy Strategy proposes no less than 0.5MW_e. A large uptake of domestic wind has been assumed here.</td>
</tr>
<tr>
<td>Solar thermal</td>
<td>Dwellings 100,000</td>
<td>Mayor’s Energy Strategy proposes no less than 75,000 domestic systems. It has been estimated that there are more than 1.5 million houses in London.</td>
</tr>
<tr>
<td>Biomass boilers - large</td>
<td>MW_th 250</td>
<td>There are no real targets for biomass boilers.</td>
</tr>
<tr>
<td>Biomass boilers - domestic</td>
<td>Dwellings 25,000</td>
<td>As above, but in this case they would be applicable to houses with space for fuel storage.</td>
</tr>
<tr>
<td>GSHP</td>
<td>Dwellings 5,000</td>
<td>This is not considered to be a very cost effective retrofit measure and it would applicable only to new houses.</td>
</tr>
<tr>
<td>Micro-CHP stirling</td>
<td>MW_e 100</td>
<td>Defra proposes 0.5GW_e and EST 3.2GW_e by 2020 for the UK. CHPA estimates 1.5GW_e by 2020.</td>
</tr>
<tr>
<td>Micro-CHP fuel cell</td>
<td>MW_e 50</td>
<td>As above.</td>
</tr>
<tr>
<td>Cavity wall insulation</td>
<td>Dwellings 1,000,000</td>
<td>It has been estimated to be more than 1 million homes with unfilled cavity wall in London.</td>
</tr>
</tbody>
</table>
| Loft insulation | Dwellings 1,500,000 | It has been estimated to be more than 2
3.2 London (Tyndall Centre Study)

Work by the Tyndall Centre (Dawson et al, 2009) has developed an integrated assessment framework for cities which attempts to link climate impacts, adaptation and mitigation strategies in the same quantified framework. The framework set in the city context within the global context of climate and economy, and this provides the boundary conditions for city scale analysis in London. The boundary conditions in the model drive scenarios of regional economy and land use change (Figure 3).

Figure 3 Overview of Integrated Assessment methodology for carbon emissions and climate impacts analysis at a city scale (Dawson et al, 2009)

3.3 Manchester

3.3.1 Background

In 2009 Greater Manchester was designated one of two city pathfinder regions, and subsequently as the UK’s first Low Carbon Economic Area for the Built Environment. The intention behind this was to help enable an acceleration of low carbon activities and to help underpin improved productivity. The mini-Stern review for Manchester (Deloitte, 2008) had
already identified £20bn of additional business from putting a low carbon plan in place. The vision promoted by AGMA was therefore that by 2015 Greater Manchester has established itself as a world leader in the transformation to a low carbon economy. In particular it is expected that by 2015 the LCEA could (AGMA, 2010):

- Deliver up to £650m additional Gross Value Add (GVA).
- Support 34,800 jobs in total (including 18,000 in the supply chain) and contribute approximately £1.4 billion GVA in the built environment in total; the increased jobs would result in the workless getting into work and provide skills progression for those already working in the sector or related sectors.
- Save 6 million tonnes CO₂ from 2010 to 2015.
- Benefit the North West and UK through developing and sharing best practice, as well as economic spill-over benefits.
- Benefit other European areas through developing and sharing best practice, as well as economic spill-over benefits.

3.3.2 Initial Scenarios

Four worked scenarios were developed to highlight how large-scale retrofit programmes in Greater Manchester could help deliver the key benefits outlined above. The scenarios were:

- Residential retrofit
- Non-residential retrofit (commercial multi-let offices)
- Public sector retrofit
- New Build and supply (landfill gas generation)

A summary of the scenarios is given in Table 4. As such they represent project descriptions rather than scenarios which identify particular trajectories.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential retrofit</td>
<td>This scenario aims ‘to deliver basic energy efficiency measures to homes at scale across Greater Manchester, with 75% of all remaining homes with under-insulated lofts or un-insulated cavities to be treated by 2013.’ In terms of residential retrofit installing insulation in 280,000 homes over a five year period would save Greater Manchester residents nearly £23m in energy bills during that period alone. The scenario presented only focuses on the low cost cavity wall and loft insulation interventions. In this scenario it is assumed that the cost per property of insulating amounts to just over £600. The total amount of funding required to install insulation across the 280,000 properties is therefore just over £170m.</td>
</tr>
<tr>
<td>Non-residential retrofit (commercial multi-let offices)</td>
<td>This hypothetical scenario, set out in Figure 6, assumes a 100,000 sq ft multi-let office building in the regional centre, which is owned by a pooled investment fund (the landlord) and is 85% let to 9 tenants on standard fully repairing and insuring leases. Tenants comprise two public agencies, three professional services firms, a public limited company selling products to the public sector and a high-street bank. Additionally, there are two food retail units on the ground floor. Lease expiries range from eighteen months to six</td>
</tr>
<tr>
<td>Years. The property was built in the mid 1980s.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Public sector retrofit</td>
<td>The public sector occupies real estate across the region, which, generally speaking, would benefit from retrofit to reduce the carbon footprint, energy spend and increase occupational comfort. Local authorities are invariably participants in the Carbon Reduction Commitment, and reducing the carbon footprint of their real estate can be a major driver in reducing their exposure under the scheme. However, the availability of capital budget is likely to be limited. In this scenario it is assumed that a £4m retrofit programme across a number of publicly owned and occupied buildings is expected to yield energy savings of 20-25%. If it is assumed that the £4m investment yields energy savings of £750k per annum, and the savings are shared between the service provider and local authority on a 75:25% ratio, with a contract term of 15 years.</td>
</tr>
<tr>
<td>New Build and supply (landfill gas generation)</td>
<td>The vision and 5 year outcome is that from 2019 all new developments will be zero carbon. Where possible the scenario will accelerate this process and bring forward investments in energy infrastructure ahead of new developments. In achieving this acceleration one of the projects identified by WP3 is the Pilsworth Landfill Gas Generation Heat Off-take (‘PHeat’) project.</td>
</tr>
</tbody>
</table>

3.3.2 Sustainable Energy Action Plan (SEAP) Scenarios

Manchester is my Planet has built on this initial work by AGMA to work with Arup and other partners to develop a Sustainable Energy Action Plan (SEAP) for Manchester. This will inform and shape energy priorities at city-regional level.² Part of the SEAP development process involved a wide range of partners in visioning future energy scenarios using Carbon Captured’s GRIP Scenario Tool (see below). The SEAP development work has been made possible with participation in the trans-national PEPESEC. In addition Manchester: Knowledge Capital has contributed to the establishment of a new Energy Group that is working to advance low-carbon actions at city-regional level. The SEAP recommends new CO2 reduction targets for Greater Manchester of 34% by 2020 and 90% by 2050.

In developing the SEAP two scenarios were explored—DEFRA market transformation (assuming 16% renewables by 2020) and the low carbon transition plan, assuming 40% of electricity is low carbon by 2020 (ARUP, 2010).

The Greater Manchester Environment Commission (GMEC) was also formed in May 2009 to co-ordinate the delivery of strategic environmental plans and projects, including the SEAP (Manchester Knowledge Capital, 2010). Future energy scenarios were produced using GRIP methodology to bring about the CO2 reduction targets identified above.

3.4 Other UK examples: region and city region

3.4.1 West Midlands Housing³

³ For other regional examples in the UK see the ‘Sustainable Consumption and Production Network’ (http://www.scpnet.org.uk/)
This study was based on Resources and Energy Analysis Programme (REAP) methodology underpinned by Material Flows Analysis and National Environmental Accounts and National Footprint Accounts (SEI, 2007). REAP-based methods can incorporate the following change variables within a ‘built environment’ component:

- Demolition rates
- Demolition mix by housing type
- Number of new houses (building rates) in total and according to housing type
- Retrofit rate
- Electricity mix
- Effectiveness of building regulations
- Population projections

The report formed part of the technical advice to inform Phase 2 of the revision process for the Regional Spatial Strategy. Using housing growth projections four scenarios were produced and evaluated:

1. Introduction of Ecohomes (100% by 2015).
2. All new builds will have 25% of renewable on-site energy by 2015.
3. A “combined moderate” scenario including:
 - All new builds have 25% on-site renewables by 2015
 - By 2015, all new builds will be “Ecohomes excellent”
 - The demolition rate will be increased to 400% by 2026
 - Energy consumption through retrofit measures has been reduced to 58% by 2026
 - Better enforced building regulations achieve a 3% reduction in energy consumption in new build houses per year.
4. “Combined aspirational” scenario: As in number 3 but with an EU renewable target of 25% renewable energy by 2015 and 30% by 2026.

Scenarios 3 and 4 were found to have the most significant impact on carbon emissions, but all of the scenarios would fail to achieve the carbon emissions required without ‘additional planning strategies’.

3.4.2 Greenhouse Gas Regional Inventory Project (GRIP)

Further development of methodologies has also led to the Tyndall centre’s Greenhouse Gas Regional Inventory Project (GRIP) (Carney and Shackley, 2009) and work on global cities by Kennedy et al (2009). The GRIP methodology, which is strongly focused on a stakeholder-led scenario building exercise, incorporates all supply and demand categories and is based around a three stage process:

- Set up a regional greenhouse gas inventory (or several) (IPCC sectors of energy industry, waste and agriculture).
• Develop ‘Energy Scenarios’.
• Use the scenario outputs to inform plans.

GRIP has also been used in an English regional context and in Scotland, as well as internationally, and was the basis for the EU, CO2 20/50 project based at Metrex⁴ (GRIP, 2006; GRIP, 2009; CURE, 2009). For example, in the North West region project (GRIP, 2006) 40 interviews were conducted with representatives from academia, industry, policy-making, local government, NGOs and pressure groups. The purpose was to determine how stakeholders perceived the then target of 60% reduction by 2050. An array of reductions ranging from 38%-90% was produced and then four scenarios were generated. An interactive workshop then divided the stakeholders into groups and asked to backcast from 2050 to 2020 to determine what needed to be done by then to achieve the relevant end point. The four scenarios presented are shown in Table 5. GRIP methodology is based around a colour coding methodology which uses green for most certain data (level 1); orange for intermediate data (level 2) and red for lower quality data (level 3).

Table 5 GRIP Scenarios in North West Region (reductions for 2050) (GRIP, 2006)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% reduction: ‘“4x4”bye’</td>
<td>Associated with a low economic growth coupled with a predominantly unchanged level of energy demand. The economy of the North West region retains the same basic composition as that of today, while improvements in energy efficiency slightly outstrip economic growth. A small switch in fuel choices has occurred on both the demand and supply side.</td>
</tr>
<tr>
<td>50% reduction: ‘Hanging out the washing’</td>
<td>This scenario, ‘Hanging Out the Washing’, is characterised by a low level of economic growth, with all sectors experiencing a net decrease in energy demand. The economy is based upon the commercial and service industries.</td>
</tr>
<tr>
<td>60% scenario: ‘Greening business is usual’</td>
<td>This sees a future with a 60% reduction in GHG emissions, characterised by a region with an economy that has tripled in size. This phenomenal growth has been achieved in combination with a reduction in energy demand of about 20%, delivered through massive increases in efficiency, in a region that continues to be led by its service sector.</td>
</tr>
<tr>
<td>70% scenario: ‘Upwardly mobile’</td>
<td>A combination of high level economic growth in conjunction with innovative and widespread use of new energy efficiency techniques. Although the economy has blossomed, it remains relatively unchanged in terms of its mix across the service and manufacturing sectors when compared to the year 2000.</td>
</tr>
</tbody>
</table>

3.4.3 UWE Carbon Management at the City scale: Exploring Carbon Futures for the Bristol Region

This PhD CASE research⁵ (Bailey, 2009; 2010) seeks to fill a knowledge gap at city scale, by undertaking a comprehensive assessment of emissions from the Bristol city region.

⁴ See http://www.eurometrex.org/

⁵ Taken from http://www.uwe.ac.uk/aqm/rose.html. See also: http://www.iuappa2010.com/presentations/3A/a183_2.pdf
Forecasts of possible pathways for carbon emissions will be produced, based upon local
development frameworks and related plans and policies, using high, low and ‘business as
usual’ carbon assumptions. This will be complemented by backcasting: the identification of
carbon reductions in sectors that will be required to achieve a series of alternative 2050 low-
carbon ‘Bristols’. These low carbon scenarios will be generated using a quasi-Delphi
technique, involving local experts. Options to close the gaps between the forecast and
backcast pathways will be identified, with the outcome being the generation of a robust and
practical CO2 pathway, from the present emission state to a future low carbon scenario in
2050. This will better inform regional and local policy and decision making, and seek to close
the gap between ‘what needs to be done’ and ‘what is being done’.

3.5 Other examples

3.5.1 Arup: Integrated Resource Management (IRM) Tool and Foresight/SlimCity Cards

Arup have developed a tool which it is claimed, enables a more balanced approach to
sustainable urban design to be achieved. The IRM tool (Figure 4) is closely based on the
concept of urban metabolism (Page et al, 2008; Roberts, 2004) and besides land use
change the tool enables transport, energy, waste and water to be modelled in a linked and
coherent way. The IRM model processes inputs and then outputs quantitative values linked
to a comprehensive list of key performance indicators (e.g. energy consumption or total
GHG emissions), which are defined within a framework set to appraise the sustainability of
the whole design. The tool enables ‘what if’ scenarios to be tested.

Figure 4 IRM Tool (Page et al, 2008)

Arup (in parallel) with the World Economic Forum have also identified key issues affecting
cities over the next 5 years (WEF/ARUP, 2009). The ‘knowledge cards’ produced are
designed to highlight global best-practice and policy across urban mobility, smart energy and
sustainable buildings. The cards offer practical solutions to many of the problems facing
cities in both the developed and developing world, supporting them towards building a more
resilient future. In compiling the cards, Arup’s researchers selected content on the basis that
any Mayor could ask the question ‘Could we do this in our city?’ The cards were informed by
global workshops with SlimCity members, desk research, interviews with Forum members, and global research with 50 cities around the world conducted by ICLEI, the international association of local governments.

Arup have also identified key drivers for change in their FORESIGHT team across the energy, waste and water sectors but also for climate change, demographics, urbanisation and planning (ARUP, 2009).

3.5.2 International

Bhatt et al (2010) provide a very helpful description of methods for city level energy analysis and Dhakal (2010) provides a comprehensive review of urban carbon mitigation research. As Dhakal (2010) notes, comparisons of over 50 cities globally point out that differences in emissions occur because of urban economic structures (manufacturing and services balance), local climate and geography, state of economic development, fuel mix, transport and other factors. Often large cities in developing nations also emit higher per capita amounts than the developed world (Dhakal, 2009).

A useful summary of carbon emission calculators and their suitability at different scales is shown in Table 6. City-based studies have used a variety of methods to account for emissions and there is often inconsistency in regard to gases measured, emissions sources covered sectoral definitions and the type of IPCC methodology employed, and there are arguments that a carbon footprint – based methodology may more accurately represent embodied energy consumed in goods and services sourced from outside cities (Dhakal, 2010). Recent research has attempted to create a more consistent global methodology (Kennedy et al, 2010).

Table 6 Different GHG calculators and their appropriability at different scales (from Carney and Shackley, 2009)\(^6\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Scale/Application</th>
<th>Other references</th>
</tr>
</thead>
<tbody>
<tr>
<td>National air emissions inventory</td>
<td>UK</td>
<td>All six ‘Kyoto’ greenhouse gases</td>
</tr>
<tr>
<td>DREAM</td>
<td>City/urban region</td>
<td>High resolution data required</td>
</tr>
<tr>
<td>EEP</td>
<td>City/urban region</td>
<td>High resolution data required</td>
</tr>
<tr>
<td>Greenhouse gas protocol</td>
<td>Company</td>
<td>Detailed company data needed</td>
</tr>
<tr>
<td>Leicester model</td>
<td>City</td>
<td></td>
</tr>
<tr>
<td>REWARD</td>
<td>English regions</td>
<td>‘Mass-balance’ approach</td>
</tr>
<tr>
<td>Various</td>
<td>Individual</td>
<td>Life style emission calculations</td>
</tr>
<tr>
<td>REEIO</td>
<td>English regions</td>
<td>Economic allocation</td>
</tr>
<tr>
<td>REAP</td>
<td>Sub-national</td>
<td>End-user including embodied energy</td>
</tr>
</tbody>
</table>

\(^6\) MARKAL is now also used extensively. MARKAL is a bottom-up technology model of the energy system initially developed by the International Energy Agency (IEA). As a bottom-up model it consists of a menu of energy technologies characterising the production, transmission and use of energy, with associated information on the costs of these technologies (see http://www.energycommunity.org/default.asp?action=71)
However, Weisz and Steinberger (2010) suggest that there are a number of research challenges with tackling research issues at city level:

- Lack of data: frequently harmonised datasets are available only at national level.
- Definitions: The terms ‘city’ and ‘urban area’ are often treated synonymously but no international definitions of these terms exist.
- Openness of cities: cities operate in their hinterlands and access resources, goods and services form this area which has a global dimension. This poses problems in measuring material and energy flows.
- Dematerialisation versus securing access: a focus on decreasing resource use overlooks a key fact for many people, that is, how to access energy and material resources. Energy poverty predominates in high income countries and many former communist states.
- Relevance of the urban scale: which components of the material and energy system are specific to urban scales, as opposed to rural and national scales?

A range of further international carbon emissions studies are provided in Table 7. It is clear from these studies that they adopt ‘business as usual’ and ‘basic policy’ scenarios; they use a range of techniques for modelling impact and generally focus on five main sectors:

- Commercial;
- Industrial;
- Government;
- Residential; and,
- Transport.

The studies also raise a number of important methodological issues, which include questions over the assumptions of activity levels, including socio-economic indicators such as population, industrial output and transport demand. It is also clear that the majority of the studies fail to focus on governance systems and exclusively focus on carbon emissions.

4.0 Conclusions

Cities are part of the problem and the solution to carbon emissions and environmental issues. There are a range of methodologies which have been developed for assessing carbon emissions from cities. These methods raise a number of research challenges:

- What is the definition of a city and should the measurement of carbon emissions be production or consumption-based (i.e. end user)?

- To what extent should city based models attempt include coterminous climate change impacts?

7 See also the ‘Urban and Regional Carbon Management’ website at: www.gcp-urcm.org
Similarly, the scenario-based models discussed here often just simply include a baseline with ‘business as usual’ and ‘policy’ as variants. Governance structures and civic society are underplayed in many scenarios so there is weak ‘co-evolutionary’ element. This raises additional questions for city-scale scenarios:

- How can city-based models best incorporate scenarios which incorporate governance structures?

- How can disruptive technologies be best included in scenario-based analysis? (for example, carbon sequestration).

Finally the GRIP approach to scenario-building, which did attempt to consider policy/governance structures at city level, used ‘backcasting’ from a future vision in 2050 to help shape outcomes for 2020. Delphi-based techniques and interviews with workshops have also been used successfully to underpin this work.
<table>
<thead>
<tr>
<th>City</th>
<th>Country</th>
<th>Scenarios</th>
<th>Technique</th>
<th>Description</th>
<th>Sectors</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jilin</td>
<td>China</td>
<td>‘Business as usual’ ‘Policy’ ‘Low carbon’ to 2030</td>
<td>IPAC-AIM (Integrated Policy Model for China)</td>
<td>Based upon an energy technology model which focuses on scenarios and policy interventions set against three main sectors.</td>
<td>Industry, Buildings, Transport</td>
<td>Chatham House, 2010</td>
</tr>
<tr>
<td>Shanghai</td>
<td>China</td>
<td>‘Business As Usual’ ‘Basic Policy’ to 2020</td>
<td>Future transitions/scenarios analysed</td>
<td>Scenarios underpinned by model which includes economic growth, population growth, the structure of the economy and the energy structure.</td>
<td>Primary, Secondary, Tertiary, Households</td>
<td>Li et al, 2010</td>
</tr>
<tr>
<td>Bangkok</td>
<td>Thailand</td>
<td>‘Business As Usual’ ‘Intervention’ (based on sixteen policies ranging across the five sectors) to 2025</td>
<td>Long Range Energy Alternatives Planning (LEAP) for energy demand and supply analysis and data for energy planning</td>
<td>Multi-criteria Decision making Approach (weighting of criteria which include resource use, environmental loading, financial and economic factors, and socio-political factors)</td>
<td>Commercial, Industrial, Government, Residential, Transport</td>
<td>Phdungsilp, 2010</td>
</tr>
<tr>
<td>Shiga Prefecture</td>
<td>Japan</td>
<td>“Business As Usual (2030)” “Cases with measures (2030)”</td>
<td>Three policy based scenarios for CM: 30% (‘moderate’), 40% (‘hi-tech’) and 50% (‘eco-’</td>
<td>Scenarios to reduce carbon emissions by 30-50% from 1990 level by 2050 while</td>
<td>Industrial, Residential, Commercial Passengers</td>
<td>Shimada et al, 2007</td>
</tr>
</tbody>
</table>

1 See also: http://www.chathamhouse.org.uk/research/eedp/current_projects/china_lcz/
References

CURE (2009) Greenhouse Gas Emissions Inventories for 18 European Regions. METREX.

GRIP (2006) Focus North West

GRIP (2009) *InterMetrex Project Extension*.

